写教案是教师们与学生沟通的重要桥梁,需认真对待,大家应认识到,教案是教师与学生沟通的重要桥梁,下面是吾发总结网小编为您分享的有理数数学教案7篇,感谢您的参阅。
有理数数学教案篇1
《1.2有理数》教学设计
?学习目标】:
1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准 与集合的含义;
3、体验分类是数学上常用的处理问题方法;
?学习重点】:正确理解有理数的概念
?学习难点】:正确理解分类的标准和按照一定标准分类
《1.2.1有理数》同步练习含答案
5.对-3.14,下面说法正确的是(b)
a.是负数,不是分数
b.是负数,也是分数
c.是分数,不是有理数
d.不是分数,是有理数
《1.2有理数》同步练习含答案解析
8.如果a与1互为相反数,则|a|=( )
a.2 b.﹣2 c.1 d.﹣1
?考点】绝对值;相反数.
?分析】根据互为相反数的定义,知a=﹣1,从而求解.
互为相反数的.定义:只有符号不同的两个数叫互为相反数.
?解答】解:根据a与1互为相反数,得
a=﹣1.
所以|a|=1.
故选c.
?点评】此题主要是考查了相反数的概念和绝对值的性质.
9.若|1﹣a|=a﹣1,则a的取值范围是( )
a.a>1 b.a≥1 c.a
?考点】绝对值.
?分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.
?解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故选b.
?点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.
有理数数学教案篇2
一、教学目标
(一)知识与技能
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法
1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观
1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点
会用有理数加法法则进行运算。
三、教学难点
异号两数相加的法则。
四、教学方法
探究法、引导发现法
五、教具准备
多媒体课件、导学案
六、教学过程
(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把你们认为可能的所有答案说出来。
(二)探究新知
1、大家开始画数轴,以原点为起点,规定向右的方向为正方向,向左的方向为负方向。
(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5
(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(—2)+(—3)= —5
(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(—3)= —1
(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(—2)+ (+3)= +1
2、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。我们可以借助数轴来得知两个有理数相加的结果。请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1、(—4)+ (—1) 2、 (+5)+(—3) 3、 (—4)+(+7) 4、 (—6)+3
3、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。但对于如1700 +(—1800),1、2 +(—5、34)这样的数字在数轴上就不容易表示出来了,怎样才能迅速准确地计算出来呢?
师生讨论、归纳出有理数的加法法则:
①同号两数相加,取相同的符号,并把绝对值相加;
②绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把较大的绝对值减去较小的绝对值;
除此之外,有理数相加,还有其他情况
(1)第一次向左走3米,第二次向右走3米,则小明仍位于出发点。
记作:(—3)+(+3)= 0
(2)第一次向右走3米,第二次向左走3米,则小明仍位于出发点。
记作:(+3)+(—3)= 0
(3)第一次向左(向右)走了3米,第二次在原地不动,则小明位于原来位置的左方(或右方)3米。
记作:(—3)+0 = +3 或(+3)+0 = 0
归纳为:
③互为相反数的两个数相加得0;
④一个数同0相加,仍得这个数。
(三)运用新知
1、例题讲解:(利用多媒体展示)
例1: 计算下列各题:
(1)180 +(—10); (2)(—10)+(—1);
(3)5 +(—5); (4)0+(—2)。
教师引导学生先观察符号特征,再教师示范写出过程,并强调题的类型每一步的理由。
解:(1)180+(—10)(异号型 )
=+(180—10)(取绝对值较大的数的符号,
=170 并用较大的绝对值减去较小的绝对值)
(2)(—10)+(—1) (同号型)
=—(10+1) (取相同的符号,并把绝对值相加)
=—1
对于(3)、(4) 小题,让学生解答。
在讲完例题后,教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话:①确定类型、②确定符号、③确定绝对值。
2、练习
(1)(口答)确定下列各题中的符号,并说明理由:
①(+3)+(+6); ② (—6) +(—7)
③ (+12)+(—7) ④ (+5)+(—10)
(2)计算下列各式:
①(—25)+(—7); ②(—13)+5;
③(—23)+ 0; ④ 45 +(—45)。
(3)土星表面的夜间平均温度为—150度,白天比夜间高27度,那么白天的平均温度是多少?
(4)某升降机第一次上升6米,第二次下降7米,第三次又上升5米,此时升降机在初始位置的_____方(填"上"或"下")相距____米。
(四)课时小结:
1、这节课你学到了什么?
2、对于这节课你有什么困惑?
(五)布置作业
课本练习1题、2题。
有理数数学教案篇3
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:给定的数字将被填入它所属的集合中
教学方法:问题导向法
学习方法:自主探究法
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
1.有以下数字:15,9,-5,2/15,8,0.1,-5.22,-80,0,123,2.33
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____ ______统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的'问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
(3)0不是有理数.
(4)一个有理数不是正数就是负数.
(5)一个有理数不是整数就是分数
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …}负数集合:{ …}
正整数集合:{ …}负分数集合:{ …}
4.下列说法正确的是( )
a.0是最小的正整数
b.0是最小的有理数
c.0既不是整数也不是分数
d. 0既不是正数也不是负数
5、下列说法正确的有( )
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
有理数数学教案篇4
一、教学目标
1.使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;
2.培养学生观察、归纳、概括及运算能力
3 使学生掌握多个有理数相乘的积的符号法则;
二、教学重点和难点
重点:有理数乘法的运算。
难点:有理数乘法中的符号法则。
三。教学手段
现代课堂教学手段
四。教学方法
启发式教学
五、教学过程
(一)、研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解①32=6
答:上升了6厘米。
问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数。
这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)
把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积6的相反数-6,即3(-2)=-6.
把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.
它山之石可以攻玉,以上就是一秘范文为大家带来的6篇《七年级数学有理数的乘法教案及教学设计》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在一秘范文。
有理数数学教案篇5
一、知识与能力
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。
二、过程与方法
经历对有理数进行分类的探索过程,初步感受分类讨论的思想。
三、情感态度与价值观
通过对有理数的学习,体会到数学与现实世界的紧密联系。
教学重难点及突破
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的'渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。
教学准备
用电脑制作动画体现有理数的分类过程。
教学过程
四、课堂引入
1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?
2、举例说明现实中具有相反意义的量。
3、如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?
4、举两个例子说明+5与-5的区别。
有理数数学教案篇6
?教学目的〗
?知识与技能目标:〗理解有理数减法的意义。
?过程与方法:〗会进行有理数减法运算
?情感态度与价值观:〗
有意识培养学生学习数学的信心和克服困难的勇气,从中体味成功的快乐.
?教学重点、难点:〗重点:异号两数相减。难点:异号两数相减。
?教学方法:〗引导发现法
?教具准备:〗尺、小黑板。
?教学过程:〗
Ⅰ.复习提问:
1.叙述有理数加法法则。
2.两个有理数的和一定大于每一个加数吗?
3.10比3大多少?10比-3大多少?-10比3大多少?如何计算?
4.3-10有意义吗?它应当等于多少?
注:问2是要向学生强调,两数的和不一定大于每一个加数,一个数加一个非零的有理数,其和可能增加也可能减少。问3是向学生说明求一个数比另一个数大多少在有理数范围内同样要用减法运算。问2和问3都是为了引入新课而设计的。
Ⅱ.新课讲解:
1.由问2、问3讲解有理数减法的意义。
在正有理数范围内3-10是没有意义的,因为3比10小,问3比10大多少,问题的本身就有问题,但引入负数就不同了。如果你有3元钱向售货员买了10元的物品,如果售货员让你先把物品拿走,那么你将欠售货员7元。这件事实如用算式表达,即3-10=-7。
由实际运算的例子归纳有理微减法法则。
考察:3-10=3+(-10)=-7,3-(-10)=3+10=13,
(-10)-(-3)=-10+3=-7,(-10)-7=-10+(-7)=-17。
等式左边的运算结果,用减法意义求出。3比10大-7,3比-10大13,-10比-3大-7,-10比7大-17,或画数轴,让学生观察得出。考察以上计算后。提问:减法是否都可转化为加法计算?启发学生自己得出有理数减法法则:减去一个数等于加上这个数的相反数。
3.讲解例题:
(l)补充例题:问15℃比5℃高多少度?15℃比-5℃呢?-5℃比15℃呢?
解:∵15-5=10,∴15℃比5℃高10℃;
∵15-(-5)-15+5=20,∴15℃比-5℃高20℃;
∵-5-15=-5+(-15)=-20,∴-5℃比15℃高-20℃。即-5℃
比15℃低20℃。
(2)教科书例1、例2。
Ⅲ.做一做
课堂练习:教科书第82页练习第1~3题。
Ⅳ.课时小结
有理数减法的意义。
Ⅴ.课后作业
1.习题2.6a组第1~9题,b组选做。
《2.5有理数的减法》同步练习
2.(题型一)李明的练习册上有这样一道题:计算|(-3)+_|,其中“_”是被墨水污染而看不到的一个数,他翻看了后边的`答案得知该题的计算结果为6,那么“_”表示的数应该是.
3.(考点一)计算:(1)-2- (+10);
(2)0-(-3.6);
(3)(-30)-(-6)-(+6)-(-15);
《2.5有理数的减法》测试
16.下表记录了七年级(1)班一个组学生的体重与标准体重的差(正号表示比标准体重重,负号表示比标准体重轻),标准体重是50 kg.
姓名小明小丁小丽小文小天小乐
体重与标准体重的差(kg)-5+3-7+4+60
(1)谁最重?谁最轻?
(2)最重的比最轻的重多少千克?
有理数数学教案篇7
【对话探索设计】
?复习
我们知道,所有的分数都可以写成两个整数的比.有限小数5.32可以写成两个整数的比吗?所有的有限小数都是分数吗?可以写成两个整数的比吗?是不是分数?
结论:所有的有限小数和无限循环小数都是分数.
?探索1
小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?
结论:正整数﹑零﹑负整数统称整数.
?探索2
下列负数哪些是负分数?
-12, ,-0.33, ,-12.03, .
?探索3
所有正整数组成正整数集合,所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:
1, 0.0708, -700, -, -3.88, 0, , 3.14159265, , .
正整数集合:{ }负整数集合:{ }
整数集合:{ }
正分数集合:{ }负分数集合:{ }
(注意:大括号内的.'省略号表示什么?)
?探索4
为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?
结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;
(2)分数一定是小数,小数不一定是分数.
?探索5
整数和分数统称有理数.
在数-100, 70.8, -7, , -3.8, 0, , ,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.
(友情提示:,都是小数,但都不是分数,自然也都不是有理数.你答对了吗?)
?练习
p10.练习
?作业】
p18.习题1.
?补充作业】
1.列出竖式,把分数化为小数.(体会分数不可能是无限不循环小数.)
2.把下列小数化为分数:3.14159, .
?备选素材】
1.判断:
(1)一个有理数,不是正数,就是负数;
(2)一个有理数,不是整数,就是分数;
(3)一个有理数,是分数,就一定是小数;
(4)一个无限小数,如果不循环,就不是有理数;
(5)小数就是分数;
(6)有理数只能分成两类.
(7)负分数不是负数.
2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.
3.分数可以分为有限小数和________________两类.
4.满足什么条件的小数才是有理数?
5.(1)列出竖式,把分数化为小数;(体会分数不可能是无限不循环小数.)
(2)有的小数不是分数,你能举出一个例子吗?
(3)说明为什么0.3是分数,而却不是.
6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类.
7.把下列各数填在相应的集合里:
-|-3|, -(-0.072), , -3.88, , 3.14, , .
有理数数学教案7篇相关文章: