为了让课堂教学更具吸引力,我们应提前规划教案,融入新颖的教学理念和方法,细致编写教案有助于确保教学内容的科学性,从而提高学生的学习效果和知识掌握水平,以下是吾发总结网小编精心为您推荐的五年级上册数学教案优质7篇,供大家参考。
五年级上册数学教案篇1
学习目标:
1、我能在认识长方体的基础上,掌握长方体的特征,并认识长方体的长、宽、高。
2、我能通过自主探究与合作交流,探索出长方体的具体特征,并能解决简单的实际问题。
3、我有信心学会本节所学内容,我一定能够获得成功。
重点:掌握长方体面、棱、顶点的特征和认识长方体的长、宽、高。
难点:形成长方体的概念,发展学生的空间观念。
学习过程
☆创设情景揭示课题
1、教师出示幻灯片,让同学们从长方体、长方形、正方形、三角形、球体、圆柱、圆等图形中,找出立体图形和平面图形,然后在立体图形中找出长方体。
2、孩子们,你能找出长方体吗?
☆学海探秘探究一:火眼金睛
1、长方体有()个面,每个面是()形。指一指哪些面是相同的?
2、长方体有()条棱,指一指哪些棱长度相等?
3、长方体有()个顶点。
4、你还能发现什么?
探究二:制作长方体框架图我发现
1、长方体的12条棱可以分为几组?
2、相交于同一顶点的三条棱长度相等吗?
探究三:借助“产品”我能认
1、相交于一个顶点的三条棱的长度分别叫做()、()和()。
2、我能指出长方体的长、宽、高。
☆走进知识大本营填一填
1、长方体有()个面,都是()形,特殊情况可能有一组相对的面是()形,相对的面的面积()。
2、长方体有()条棱,相对的棱长度()。
3、长方体有()顶点。
4、相交于长方体一个顶点的三条棱的长度分别叫()、()和()
辨一辨
1、长方体的6个面不可能有正方形。()
2、长方体的12条棱中长宽高各有4条。()
3、一张长方形的纸是一个长方体。()
4决定长方体的大小是长、宽、高。()
☆拓展延伸:我能自己制作一个美观的长方体玩具箱。
☆谈收获、写反思(梳理成数学日记)
通过这节课的学习,你有哪些收获?还有哪些方面需要进一步的努力?
五年级上册数学教案篇2
教学目标:
1、使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。
2、能够列出简单实验中所有可能发生的结果。
3、培养学生学习数学的兴趣,形成良好的合作学习的习惯。
教学重、难点:
体验事件发生的确定性和不确定性。
教学方法:
讲授法,演示法,操作法等等。
教学过程
一、谈话引入新课
1、师:同学们看谁来了?
生:阿凡提
师:同学们对阿凡提都很熟悉,下面我们侃侃他给我们带来什么问题?
2、师:一天,阿凡提牵着自己心爱的小毛驴,背着一袋金币往家赶。刚到村口,就碰到那个贪财、吝啬的大财主。他看到阿凡提手里的一袋金币就眼红。眼珠转了转,对阿凡提说:“如果你能把口袋里的金币往空中一抛,落下后个个都是正面朝上,那么这些金币就是你的了。如果不是,哼!哼!那它就是我的。那么同学们猜猜结果会怎么样呢?
生:可能是阿凡提得到金币,也可能是吝啬的大财主得到金币。
师:我们对这件事情的结果不能得到确定的答案。我们把它叫做可能性。
3、师:元旦快要到了老师让同学们用抽签的方式来决定自己所表演的节目,节目分别有唱歌、跳舞,等等,那么如果让你抽的话,你可能会抽到什么节目呢?
生:可能是唱歌,也可能是跳舞,还有可能是其他的节目。
师;对于这件事情结果,我们同样不能得到确定的结果。
4、师:以上这些都是用用”可能”、”不可能,”一定”等词语来表达,都
属于可能性事件,今天老师就和大家一起来学习可能性
5、师课件演示课题:可能性。
二、自主探索,获取知识并巩固练习
(一)教学例题1
1、师:请同学们看前面,这里有1号盒子、2号盒子。
2、师:咱们来看看里面都有些什么颜色的球。(展示两盒子中球的颜色、数量。1号盒子中装有8个红球。2号盒子中装有2个红球,2个黄球,2个黑球,2个绿球。
3、问题
(1)师:从1号盒子里面任意摸出一个球,一定是红球吗?为什么?
学生小组讨论,教师巡视指导。
(2)师:各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)
(依次板书:一定可能不可能)
生:一定是红球。
师:为什么?
生:因为1号盒子里面装的全部是红球。
(3)师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盒子,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)
师:同学们猜测的结果对吗?
生:对
师:同学们真聪明。
(4)师:从2号盒子里任意摸一个呢?请小组讨论:
(5)师:请学生摸一摸(摸出3个后提问,如继续摸下去,能摸到红球吗?那可能摸出什么球?为什么?)
生随机汇报。
(6)老师可根据盒子里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?……
(二)小组合作,摸球游戏(每次口袋里该放什么球)
1、师;同学们喜欢玩游戏吗?
生:喜欢
师:下面我们就来玩一个根据要求装不同颜色小球的游戏。
师出示条件
(1)任意摸一个,不可能是红球。
(2)任意摸一个,可能是红球。(可以放红、黄、黑色三种颜色的球,也可以放红、黄两种颜色球,还可以放红、绿色两种颜色的球)
(3)任意摸一个,一定是红球。
2、生按照要求操作
3、师巡视指导
4、生操作完一个题目,教师指导学生个别汇报,并说明为什么。
(三)教学例题2
1、师:生活中有许多的“可能性”例如:明天可能下雪……(请学生举例几个)
2、生汇报
3、师演示例2图片
⑴看图判断
⑵说说为什么,并用“可能、不可能、一定”这些词语完整的表述。
图片5时,学生读题后,师展示小资料:目前,全世界每秒钟大约出生4。3人、每
分钟大约出生259人、每小时大约出生15540人、每天大约出生37万人、每年增长约8296万人。
⑶汇报、讲评。
(四)考考你
1、师:刚才我们知道什么情况下该用“一定”,“可能”,“不可能”来表述。下面老师要考考大家。
2、师课件演示题目:
(1)太阳(
)从东方升起。
(2)今天老师(
)要表扬我。
(3)时间永远(
)停止。
3、指导生认真读题,并分析说出为什么。
(1)太阳(一定)从东方升起。
(2)今天老师(
可能)要表扬我。
(3)时间永远(不可能)停止。
(五)连一连
1、师:从下面的四个箱子里,分别摸出一个球,结果是哪个?连一连。
2、师指导生认真读题,分析过程
3、师课件演示结果,并引导学生说出为什么。
(六)知识应用
1、师:同学们,下面这些城市你们去过吗?
2、生汇报
3、师:下面老师带领大家一起去那些地方看看,他们那里的冬天会下雪吗?
4、师课件演示图片
5、通过刚才对资料了解,同学们能不能用“一定”,“可能”,“不可能”来描述一下呢?
6、生回答
7、师指导描述
三、全课总结,课外延伸
1、师:同学们大家谈谈这节课的收获吧!
2、师:把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用“一定”“可能”、“不可能”说一说吗?请同学们下课以后和你的好朋友说一说。
四、课后练习
p108
2、3
五、教后反思
善问:善于抓住问题的实质,根据教学的实际情况和自己的学习状况,能自觉地把发现问题、提出问题、解决问题充满数学课堂,并通过对已有的知识进行整理、分析、归纳,提出解决问题的办法,最终形成对问题的.独立见解。
创设问题情景是发现和提出问题的前提条件。发现和提出问题主要依赖于主体对活动的积极性,活动量越大,接触面越广,就越容易发现和提出活动中的问题。古人说“学起于思,思源于疑”。作为教师要根据学生的心理特点和学科知识特点,采取适当的方法创设情景,引发学生的求知欲,从而积极地探索研究新知识。例如:在教学“圆面积”时,首先出示一面圆形镜子,问:同学们你们看着老师手中拿着的这面圆形镜子,你能提出哪些数学问题?甲生说:圆形镜子的半径是多少?乙生说:圆形镜子的直径是多少?丙生说:圆形镜子的周长是多少?丁生说:圆形镜子的面积是多少?随着学生提出的这些问题,同学们立即投入到思索与讨论之中。
总之,在数学教学过程中,学生是一个积极的探求者,教师的作用只是创设一种学生能够自主探索的氛围,而不是去提供现成的知识或结论。通过对“培养学生发现问题的意识”的研究,使我领悟到:要培养学生发现问题的意识,必须创设益于学生自主探
索的氛围;创设师生之间民主、和谐、互动的氛围;创设自由、活泼、主动展示自我的空间。这样才能使他们处于思维的最佳状态,才能敞开心扉,发挥潜能,显示自我,为自己的终身学习奠定良好的基??
五年级上册数学教案篇3
教学内容:
课本第11页上的内容。
教学目标:
1、通过找因数,观察它们的特点,初步理解质数和合数的含义。
2、培养孩子的观察、比较、抽象、概括能力,通过探索找出寻找质数的简单的方法。
3、使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。
教学重点:
在教学活动中,帮助学生理解质数和合数的意义。
教学难点:
培养孩子的观察,通过探索找出寻找质数的简单的方法。
教具准备:
投影仪、小正方形纸片等。
教学过程:
一、 揭示课题
1、 先复习自然数按能不能被2整除的分类。
2、 教师引入:同学们已经学习并掌握了找因数的方法,这一节课,我们再一起学习找质数。
板书课题:找质数。
二、组织活动,探索新知。
活动:拼一拼
1、用12个小正方形拼成长方形,看谁拼的方法多,动作还快。
(同桌用12个小正方形拼长方形,可以合作,并完成书第10页的表格。)
2、学生 汇报,教师填表(投影出示下表)
小正方形个数(n) 拼成的长方形种数 n的因数
(1)让学生观察左表中各数的因数,看看有什么发现?
(2)结合上面的发现,将212各数分为两类,说一说这两类数分别有什么特点。
3、教师提示质数和合数的意义。
一个数只有1和它本身两个因数,这个数叫做质数;
一个数除了1和它本身以外还有别的因数,这个数叫做合数。
4、教师:1是质数还是合数呢?(1既不是质数,也不是合数。)
三、巩固练习(做一做)
1、在1 4 7 10 11 15 17 18 21这些数中,哪些是质数?哪些是合数?
2、完成课件练一练1、2题
四、总结。
通过今天这节课的学习,你有什么收获?你还有什么要问的?
五、作业。
优化作业
五年级上册数学教案篇4
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)
齐读p12的注意。
二、新授
(一)找因数
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有: 1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的`因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有: 1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,的是几?
看来,任何一个数的因数,最小的一定是( ),而的一定是( )。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
1、2、3、6、9、18
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报 3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数 3的倍数 5的倍数
2、4、6、8…… 3、6、9…… 5、10、15……
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业
完成练习二1~4题
五年级上册数学教案篇5
【教学内容】
人教版五年级上册第二单元《小数除法》第24页例1。
【教材简析】
本节内容是本单元的起始课,通过例1教学“被除数的整数部分够商1,能除尽”的情况。它是在学生已经学习了整数除法的意义和计算方法、小数的意义和性质、小数加减等知识的基础上进行学习的,是小数除法中最简单、最基础的计算,为学生下面学习“整数部分不够商1,能除尽”和“除到被除数的小数末尾有余数”这两种特殊的小数除以整数计算打基础,更为接下来的除数是小数的除法学习及小数四则混合运算的学习奠定基础。教材创设了晨练中的具体计算问题,体现了计算与解决问题的密切联系。例1由解决“王鹏平均每周应跑多少千米”的问题,引出对22、4÷4的计算方法的探讨,引导学生根据已有的知识经验对小数除以整数进行探究,呈现了把千米数改写成米数,将小数除以整数转化为整数除法来计算的方法,通过与小数除以整数的一般方法的对比,使学生看到两种方法的联系,将重点放在竖式计算的理解上,在体现学生对计算方法的探索过程的同时,体现了算法的多样化。“做一做”及练习三第1、2、5题配合例1的教学,帮助学生进一步巩固整数部分够商1,能除尽的小数除以整数的计算,引导学生应用所学知识解决实际问题。
【学情分析】
学生已经比较熟练的掌握了整数除法的计算方法,在以往的学习中已经有多次探索计算方法的经历和体验,大部分学生能在教师的引导下利用转化等方法迁移旧知,探索计算方法,因此对于小数除以整数的计算方法的学习不会感到困难。五年级学生在分析能力、表达能力、质疑解疑能力等各方面较低年级有一定程度的发展,他们乐于在独立探索、合作学习的过程中体验成功,所以教学中要创造条件和机会,引导学生充分经历探索的过程,利用已有知识和生活经验探索计算方法,在展示交流的过程中通过不断地质疑、讨论,解决困惑来理解算理,使学生在轻松愉快的教学活动中获取知识,提高能力,培养自主学习,勇于探索的学习品质。
【教学目标】
1、结合具体情境,体会小数除法的意义,理解除数是整数的小数除法的算理。
2、利用生活经验和已有知识,迁移推理,经历探索小数除以整数计算方法的过程,会计算比较容易的除数是整数的小数除法。
3、在探索计算方法的过程中,体验独立思考、合作学习的快乐,通过解决简单的实际问题感受小数除以整数计算在日常生活中的广泛应用。
【教学重点】
理解并掌握小数除以整数的'计算方法。
【教学难点】
理解商的小数点要与被除数的小数点对齐的道理。
【教具准备】
多媒体课件等。
【教学过程】
学习目标
1、能理解例1中的解题思路和两种不同的计算方法。
2、利用以前学过的整数除法的计算方法,探索小数除以整数的计算方法,能正确进行小数除以整数的计算。
3、养成自己动脑思考、细心计算的习惯、知识链接
1、计算:224÷4=
2、填空:10、7千米=( )米 4400米=( )千米
3、根据336÷14=24直接写得数
3360÷140=( ) 33600÷1400=( ) 3360÷14=( )
学习过 程
一、仔细阅读第24页的例1,思考:
1、 例1要解决什么问题?为什么要用除法计算?
2、 被除数是小数该怎样计算呢?
3、 教材中提供的几种计算方法你是怎样理解的?还有别的计算方法吗?
4、 与“知识链接”的计算题仔细进行对比,想一想:小数除以整数与整数除以整数的计算方法有什么相同和不同之处?计算小数除以整数时要注意什么?
二、我的收获:
1、我会计算22、4÷4(会用几种方法计算就写出几种,把你最喜欢的方法标注出来)
方法一: 方法二: 方法三:
2、我发现:
三、我的困惑:
2、教师课前进行批改,与不同层次的学生就导学案内容进行交流,了解学生的预习情况。
二、小组交流 共享收获
1、课件出示导学案“知识链接”2题和3题,指名填空。
2、全班交流1题: 224÷ 4怎样算?要求学生仔细地说出竖式计算过程,教师相机板书。
3、引导学生在小组内交流预习例1的收获。
(1)课件出示例1,指名回答:例1要解决什么问题?为什么要用除法计算?
(2)引导学生在小组内交流:怎样解决22、4÷4= (千米)的问题?
相信每一位同学所得出的答案都有自己的想法,请把你的想法在小组内交流吧,把不明白的弄明白,比比看哪个小组解决困难最多。
(3)学生在组长的带领下寻找解决问题的最佳方法。
(小组内交流,师收集相关信息。)
三、展示汇报 明确算法
(1)确定本组的汇报内容,派代表在全班展示。
(2)学生可能展示的以下算法:
1)22、4千米=22400米 22400÷4=5600(米) 5600米=5、6千米;
2)22、4÷4=5……2、4;
3)先把22、4扩大10倍,变成224,用224÷4=56,再把商缩小10倍,得出结果是5、6;
4)列竖式计算
在小组展示的过程中,要引导学生对没有汇报清楚的问题或者不理解的问题进行补充和质疑,教师要针对重点、难点问题及时进行追问。
(3)重点引导学生交流竖式计算方法,板书22、4÷4的竖式计算过程。
1)竖式中的“24”表示什么?
2)商“6”表示什么?
3)怎样能区分商的整数部分和小数部分?
四、深化点拔 渗透思想
1、观察、对比:我们今天所学的“22、4÷4”和我们以前学的整数除法“224÷4”相比,有哪些相同点和不同点?
得出:小数除以整数的计算方法与整数除法的计算方法相同,都要把商的数位和被除数的数位对齐。
2、渗透数学思想方法:通过交流我们看到大家都运用了迁移类推的方法,利用整数除法的计算方法探索出小数除以整数的计算方法。
3、讨论:经过上面的探讨,你觉得应该怎样计算小数除法呢?
总结小数除法计算方法:
1)一除——按整数除法的方法计算。
2)二齐——商的小数点要和被除数的小数点对齐。
五、课堂检测 巩固提升
1、下发检测题卡,进行5分钟课堂检测。
检测题卡
1、 基础题:列竖式计算。
25、2÷6= 34、5÷15=
2、 变式题:请根据5823÷3=1941,直接口算下列各题的结果。
58、23÷3= 5、823÷3= 582、3÷3=
3、 综合题:两个筑路队,甲队8天修路6、48千米,乙队9天修路10、35千米,哪个队的工作效率高些?先估一估再计算。
2、全班交流答案,学生自我批改。
3、通过举手的方式,了解学生检测题完成情况。
六、课堂小结:
通过今天的学习,你有什么收获?还有什么疑问?
五年级上册数学教案篇6
教学内容:p23例7、做一做,p26练习四第10、11题。
教学目的:
1、使学生学会用“四舍五入”法取商的近似数。
2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。
3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学重点:知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。
教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学过程:
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
6。03 7。98
2.按“四舍五入”法,将下列各数保留两位小数.
8。785 7。602 4。003 5。897 3。996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
3。 计算0。38*1。14(得数保留两位小数)
二、新课
1.教学例7:
教师出示例6,口述图意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应 该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。
教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的`近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?
2.p23做一做:
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
师:解题时用了什么技巧?
三、巩固练习
1、求下面各题商的近似数:
3.81÷7 32÷42 246。4÷13
2、p26第10题第(1)题。
四、作业:p26第10题第(2)题、第11题。
课后小记:
本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的步骤。 所以在设计巩固练习时应增加小数除以小数的练习。
其次我根据学情补充介绍了一种求商近似数的简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明 要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清 了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
五年级上册数学教案篇7
教学目标
1、掌握整除、约数、倍数的概念.
2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.
教学重点
1、建立整除、约数、倍数的概念.
2、理解约数、倍数相互依存的关系.
3、应用概念正确作出判断.
教学难点
理解约数、倍数相互依存的关系.
教学步骤
一、铺垫孕伏(课件演示:数的整除下载)
1、口算
6÷515÷323÷7
1.2÷0.324÷231÷3
2、观察算式和结果并将算式分类.
除尽
除不尽
6÷5=1.215÷3=15
1.2÷0.3=424÷2=12
23÷7=3......2
31÷3=10......1
3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.
4、寻找具有整除关系的算式.
板书:15÷3=515能被3整除
5、分类除尽
除不尽
不能整除
整除
6÷5=1.2
1.2÷0.3=4
15÷3=15
24÷2=12
23÷7=3......2
31÷3=10......1
二、探究新知
(一)进一步理解”整除“的意义.
1、整除所需的条件.
(1)分析:24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余数)
6不能被5整除;(商是小数)
1.2不能被0.3整除;(被除数和除数都是小数)
(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:
a、被除数和除数(0除外)都是整数;
b、商是整数;
c、商后没有余数.
板书:整数整数整数(没有余数)
15÷3=5
2、用字母表示相除的两个数,理解整除的意义.
(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?
(板书:a÷b)
学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.
(板书:a能被b整除)
(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)
学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).
3、反馈练习.
(1)下面的数,哪一组的第一个数能被第二个数整除?
29和336和121.2和0.4
(2)判断下面的说法是否正确,并说明理由.
a.36能被12整除.()
b.19能被3整除.()
c.3.2能被0.4整除.()
d.0能被5整除.()
e.29能整除29.()
4、”整除“与”除尽“的联系和区别.
讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?
(举例说明)
(二)约数、倍数的意义
1、类推约数、倍数的意义.
(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.
(2)学生口述:
24能被2整除,我们就说,24是2的倍数,2是24的约数.
10能被5整除,我们就说,10是5的倍数,5是10的约数.
a能被b整除,我们就说a是b的倍数,b是a的约数.
(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)
(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).
2、进一步理解约数、倍数的意义.
(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.
(2)约数和倍数相互依存的关系.
学生明确:约数和倍数是一对相互依存的概念,不能单独存在.
(3)反馈练习:
a、下面各组数中,有约数和倍数关系的有哪些?
16和2140和2045和15
33和64和2472和8
b、判断下面说法是否正确.
a、8是2的倍数,2是8的约数.()
b、6是倍数,3是约数.()
c、30是5的倍数.()
d、4是历的约数.()
e、5是约数.()
3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.
4、教学例2:12的约数有哪几个?
(1)引导学生合作学习,讨论分析.
(2)汇报、板书:
12的约数有:1、2、3、4、6、12
(3)练习:15的约数有哪几个?
(4)学生明确:
一个数的约数是有限的.其中最小的约数是1,的约数是它本身.
5、教学例3:2的倍数有哪些?
(1)引导学生合作学习,讨论、分析.
(2)汇报、板书:
2的倍数有:2、4、6、8、10......
(3)练习:2的倍数有哪些?
(4)学生明确:
一个数的倍数的个数是无限的,其中最小的倍数是它本身.
三、全课小结
这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?
(板书课题:约数和倍数的意义)
四、随堂练习
1、下面的说法对吗?说出理由.
(1)因为36÷9=4,所以36是倍数,9是约数.
(2)57是3的倍数.
(3)1是1、2、3、4、5,...的约数.
2、下面的数,哪些是60的约数,哪些是6的倍数?
3412162460
教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.
3、下面的说法对吗?为什么?
(1)1.8能被0.2除尽.()1.8能被0.2整除.()
1.8是0.2的倍数.()1.8是0.2的9倍.()
(2)若a÷b=10,那么:
a一定是b的倍数.()a能被b整除.()
b可能是a的约数.()a能被b除尽.()
五、布置作业
1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)
101336
2、在下面的圈里填上适当的数.
六、板书设计
约数和倍数的意义
探究活动
五年级上册数学教案优质7篇相关文章: